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Abstract

Based on a large administrate dataset covering the universe of phone calls and airtime

transfers in a country over a four year period, we examine the pattern of adoption of airtime

transfers over time. We start by documenting strong positive e¤ects of increased usage of

the new airtime transfer service by social neighbors on own adoption probability. We narrow

down the possible sources of this e¤ect by distinguishing between network externalities and

social learning. Within social learning, we di¤erentiate between learning about existence

of the new product from learning about its quality or usefulness. We �nd robust evidence

suggestive of social learning both for the existence and the quality of the product. In contrast,

we �nd that the e¤ect of increased usage by social neighbors on own usage turns negative

after �rst adoption, suggesting that airtime transfers are strategic substitutes among network

neighbors. We conclude that learning about existence and quality are important mechanisms,

while strategic complementarities are not.

�We bene�tted from comments from Jeremy Folz, Simon Quinn, Joshua Blumenstock, Paul Frijters and sem-
inar participants at Oxford University, Monash University, the University of Nottingham and the University of
Gothenburg, as well as conference participants at the 2016 CSAE Conference, Oxford and at the UNU-WIDER
Nordic Conference in Development Economics, Helsinki. We thank Nathan Eagle for making the data available
for this study.



1. Introduction

The introduction of IT technology has revolutionized the way many products and services are

distributed. This is also true in less developed countries where mobile phones have opened

new avenues for the di¤usion of information and the adoption of new technologies and services.

Examples include: market price information (e.g., Jensen 2007, Aker and Fafchamps 2015,

Fafchamps and Minten 2012); agricultural extension services (e.g., Cole and Fernando 2016.);

health information; mobile banking (e.g., Jack and Suri 2014); and political elections (e.g., Aker,

Collier and Vicente 2017). The fact that all these applications are based on a platform �the

mobile phone �originally designed for social communication leaves much room for possible social

network e¤ects in adoption and usage.

In this paper we examine the (�rst) adoption of an airtime transfer service in Rwanda using

a large administrative dataset from a monopolistic telecommunication operator.1 Peer-to-peer

transfers of airtime between phone users is a predecessor of the introduction of mobile banking.

The only di¤erence is that, when mobile banking is in place, users can redeem airtime for cash

from participating agents. The pattern of di¤usion of airtime transfers across phone users can

therefore be taken as indicative of the likely di¤usion of mobile money and other phone-based

services. It is also potentially informative about other di¤usion processes on social networks.

It has often been observed that the adoption of new products and services, and other be-

havioral changes, di¤use along social networks (Young 1999, 2009; Jackson and Yariv 2005;

Björkegren 2019). What is less clear is why. This paper aims to throw some light on this issue.

There are many possible reasons why adoption may spread along social networks. One is that

some individuals get to know of a new product.2 People talk about new products with others

1The outcome of interest in the present paper is �rst adoption, (i.e., the �rst time an individual uses the
technology actively). Subsequent to (�rst) adoption, there is continued useage and non-usage of the technology.

2To keep things straightforward, we speak throughout of the adoption of a new product, but the same principles
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in their network of acquaintances, so that information about the existence of the new product

spreads through social learning (Mobius and Rosenblat 2014). A proportion of those informed of

the new product adopt it, and since adoption requires knowing about the new product, adoption

is observed to di¤use by social contact, in a way similar to the way an epidemic spreads in a

population.

Other forms of social learning are possible as well. For instance, people may learn about the

hidden qualities of a new product through usage. The decision to adopt may depend on what

people know of these hidden qualities, such as how useful or reliable the new product really

is. If too little information is available, risk averse individuals refrain from adopting. It follows

that, as people share information about hidden characteristics of the new product along social

networks, adoption spreads. The main di¤erence with the �rst type of social learning is that

here more usage by social neighbors provides cumulative information that is valuable for the

adoption decision, over and above simply knowing that the product exists.

Di¤usion along social networks may also occur for reasons having nothing to do with social

learning. One particular case is network externalities or, more precisely, strategic complementar-

ities in adoption decisions (Saloner and Shepard 1995, Jackson and Yariv 2005; Vega-Redondo

2007). If adoption by my social neighbors increases my incentive to adopt, I am more likely to

adopt following adoption by my neighbors. This mechanism may arise even when all agents have

full information about the existence and qualities of the product, although it may be combined

with social learning. The main di¤erence with social learning is that network externalities do

not wear o¤: they continue to reinforce adoption long after any hidden information about the

new product would have been learned. Strategic complementarities may arise for many di¤erent

reasons, some good � the usefulness of the product increases with more widespread usage �

generally apply to the adoption of a new service.
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some bad �adoption protects me against some of the negative externalities generated by wide-

spread usage. The canonical example of a strategic complementarity that arises from a negative

externality is the installation of a burglar alarm: when I install an alarm, I initially displace

crime towards neighbors, which raises their incentive to install a burglar alarm; in equilibrium,

everyone incurs the cost of having a burglar alarm but it no longer serves as deterrent (Jackson

2009).

In this paper we seek to identify the respective roles of network externalities and social

learning in the adoption of a new service o¤ered to mobile phone users. We also seek to identify

the relative importance of social learning about product existence vs. its hidden qualities. To

do this, we rely on a large dataset that includes all phone calls made by mobile phone users

of a large monopolistic provider in an entire country for a period of four years. While the

dataset includes many observations, each observation contains a limited amount of information.

We compensate for this to the best of what the data allows by including di¤erent types of �xed

e¤ects to capture unobserved heterogeneity. We �nd robust evidence suggestive of social learning

both for the existence and the quality of the product. In contrast, we �nd that the e¤ect of

increased usage by social neighbors on own usage turn negative after �rst adoption, suggesting

that airtime transfers are strategic substitutes among network neighbors.

This paper complements a large literature documenting the di¤usion of new products and

behaviors on social networks (e.g., Centola 2010, Ryan and Tucker 2012, Jack and Suri 2014).

Our contribution to this literature is to decompose network e¤ects into di¤erent components

and to measuring the sign and magnitude of these components. We �nd that network e¤ects

need not be strategic complements, as is commonly assumed in the literature (e.g., Jackson and

Yariv 2005, Vega-Redondo 2007). In contrast, we �nd evidence that networks play a role in the

circulation of information. The information e¤ects of social networks have been documented
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before (e.g., Granovetter 1995, Jensen 2007, Aker 2010, Aker and Fafchamps 2015), but the

emphasis has been on the continued informational bene�ts that networks provide �a form of

network externality. We �nd that, in the case of the di¤usion of a new product, the e¤ect of

social networks on product adoption and usage are limited in time. These results suggest that

network e¤ects in di¤usion are driven primarily by the spread of information about the existence

and the characteristics of the new product.

The paper is organized as follows. We start in Section 2 by introducing the testing strategy.

The conceptual framework behind it is detailed in Appendix A. The information available in the

raw data is discussed in Section 3, together with a description of how we construct the variables

used in our analysis. Empirical results are presented in Section 4. Section 5 concludes.

2. Testing strategy

The intuition behind our testing strategy can be summarized as follows �see the Appendix A

for a formal treatment. Suppose that network e¤ects arise solely due to social learning about

the existence and usefulness of a new product. In this case, recent usage by network neighbors

predicts �rst adoption by an individual i: usage by network neighbors generates information

that can be passed onto i, thereby increasing the likelihood that i adopts the product too. If

using the product conveys full information about its usefulness, after i has used once, recent

usage by network neighbors should no longer predict i�s own use.

Now suppose instead that network e¤ects are entirely driven by strategic complementarities

in usage. In this case, In this case, own usage will co-vary with neighbor usage after �rst

adoption. This observation is the �rst basis of our testing strategy.

We also wish to distinguish between the two types of social learning: about the existence of a

new product; and about the usefulness of the new product. To this e¤ect, we note that existence
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is known to i as soon as one of i�s neighbors reveals the product to i. The researcher observes a

signal Mit = 1 if, at time t, individual i receives unambiguous information about the product�s

existence, even if i has never used the product yet; Mit = 0 otherwise. It is then possible to

disentangle whether social learning is purely about existence or also about the usefulness of

the product: when social learning is purely about product existence, once i has learned about

the existence of the product, subsequent usage by network neighbors can no longer predict

�rst adoption by i. In contrast, if social learning is about product quality, usage by network

neighbors continues to predict i�s �rst adoption because it accummulates information that can

help i decide whether to adopt the product or not. The fact that the two learning models make

di¤erent predictions makes it possible to test one against the other.

In Appendix A we present a model of social learning that formalizes the above intuition

in a clear way. We then use it to derive empirical predictions that can be put to the test

using the data at our disposal. It is important to realize that our testing strategy does not

necessitate the type of causal identi�cation that is required for impact evaluation. This is

certainly true for strategic complementarities: we simply use the fact that, if usage generates

strategic complementarities between network neighbors, usage will be correlated between them;

in contrast, if strategic complementarities are absent, there is no reason to expect correlation

in usage after social learning has ended. Nothing in this strategy relies on identifying who in

the network �causes�others to use the product �this would be futile anyway since causation is

mutual.

For strategic learning, we rely on a purely mechanical form of transitivity: for i to receive

information from network neighbors, these neighbors have to have been exposed to the informa-

tion �rst. Nothing precludes i from actively seeking information from neighbors, or from inciting

neighbors to experiment with the product: in each of these cases, i plays a part in the causation
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process. Our strategy simply relies on the fact that neighbors must �rst experiment with the

product to be able to convey information that helps i decides whether to adopt or not. This is

why adoption by network neighbors predicts �rst adoption by i, without necessarily �causing�it.

Threats to identi�cation come not from the lack of purely exogenous variation, but rather

from the possible existence of confounds, that is, unobservables that predict usage by i and are

correlated with usage by network neighbors �but have nothing to do with information transfer

or strategic complementarities. The most likely confound is the presence of location- and time-

speci�c advertizing and promotional campaigns. We deal with this issue by demonstrating

the robustness of our �ndings to the inclusion of a wide range of �xed e¤ects. Other possible

confounds are discussed in the empirical section.

3. The data

The data we use to test our conceptual framework is administrative data on the usage and

di¤usion of a mobile phone service entitled ME2U. The service was introduced in Rwanda

in September 2006 by the dominant mobile phone operator at the time. This service allows

subscribers to transfer airtime to another subscriber at no cost. In February 2010 the operator

added the possibility for subscribers to redeem airtime into cash, thereby formally introducing

Mobile Money to the country. Over the period of our study, airtime could only be transferred

to another subscriber.3

Our outcome of interest is the action of sending airtime to another subscriber. From the

moment ME2U was introduced in the country, no action was required (e.g., registration or fee)

for a subscriber to receive airtime. Hence observing that a subscriber receives airtime at a given

point in time does not imply a voluntary decision to use the service. Nonetheless, it does un-

3There is some evidence that a small number of subscribers used airtime transfers to retail airtime that they
bought in bulk at a discount. We discuss below how we deal with this possibility in our analysis.
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ambiguously inform the recipient that peer-to-peer airtime transfers are in existence.4 Knowing

that it is possible to transfer airtime to someone else does not, by itself, confer full informa-

tion about the usefulness of the service to a particular user. There are many attributes that

subscribers may care about, such as easy-of-use, reliability, speed of execution, and protection

against abuse or theft. Talking to other users about their experience sending airtime to others

may therefore confer useful information to prospective users.

Network externalities may arise once the practice of transferring airtime across subscribers

is su¢ ciently widespread in a particular social or geographical grouping. For instance, it would

become easier to solicit small airtime transfers from friends and relatives in order to make a call

or send a message, since they would be familiar with how to send airtime. It may also become

possible to purchase or otherwise obtain airtime from strangers, e.g., on the bus home. Hence

network e¤ects may continue to manifest themselves even after a subscriber is fully acquainted

with the service.

In the remainder of this section we begin by describing the source and structure of the data

used in the analysis. Next we de�ne all the variables used in this study and we explain how they

are constructed. Last we present descriptive statistics on the variables used in the empirical

section.

3.1. Data source

The data come from a large telecommunications operator. During the period of investigation,

this operator enjoyed a quasi-monopoly on mobile phones in Rwanda. Access to the data was

granted by Nathan Eagle through remote access to a Northeastern University computer server

4On receiving a transfer, the recipient would also receive a message indicating that their airtime balance had
been updated. Hence, the recipient would have realized that they got a transfer and thus learned about product
existence.
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under conditions of strict con�dentiality.5 This is a large dataset comprising multiple computer-

generated administrative �les. We use two main bodies of data for our analysis: data on airtime

transfers; and data on phone calls. The former are used to study �rst adoption and di¤usion; the

latter is used to de�ne social networks. The data identi�es subscribers through an anonymized

identi�er based on their phone number/SIM card. The same identi�er is used throughout the

data. We do not have information on the name or personal characteristics of individual users.6

The call data consist of an exhaustive log of all phone-based activity that occurred from the

start of 2005 until the end of 2008. It provides information on the time, date, duration, receiver

id and sender id for all phone calls made between 2005 and 2008. In total this dataset includes

50 billion transactions relative to approximately 1.5 million subscribers.

Data on calls is matched with a second dataset, from the same source, on usage of the airtime

transfer service ME2U. This dataset consists of a log of all mobile-based airtime transfers that

occurred between the introduction of the service in September 2006, and December 2008. For

each transaction we observe the sender and receiver, the amount sent, and the time stamp (i.e.,

time and date).7 We unfortunately do not have any information on the timing or geographical

coverage of any promotional campaign that the mobile phone provider may have run. SMS

received from the phone company (which may include promotional messages about ME2U) are

not included in our data.

After its introduction in September 2006, ME2U usage increased steadily until the 1st of

July 2008 when there is a break in the administrative data (see Figure 1).8 To avoid spurious

5 If one wishes to use this dataset, please contact Nathan Eagle at nathan@mit.edu.
6We cannot rule out that an individual may have multiple phone numbers, or that phone numbers may be

transferred across users.
7The recipient of an airtime transfer receives a text message informing him/her that airtime has been transferred

to their phone. The text message gives the amount transferred and the identity of the person who transferred it.
To the best of our knowledge, no information is provided in the SMS on how the recipient can use the service to
send airtime to others. But this information is available directly from the provider.

8Over the period of our study, there was no mobile money in Rwanda in the sense that is commonly understood,
that is, the ability to pay for purchases at a¢ liated shops and the ability to redeem mobile money for cash from
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inference, our analysis is based solely on airtime transfer data between September 2006 and

July 2008. During this period, transferring airtime was free, and the number and amount of

transfers that a user could send per day was not limited. Receiving or sending airtime could be

done without the need to subscribe to the service �ME2U became available to all subscribers

immediately after its introduction. The only requirement a user needed to ful�l to use the service

is to have su¢ cient credit on his phone. When a user sends an airtime transfer, the amount

sent is deducted from the user�s airtime balance, the same balance that is used to make calls

or send text messages. Topping up one�s balance can be done by buying airtime vouchers from

local shops and street vendors. Figure 2 shows how the proportions of adopters and active users

in a given week developed over the sampling period.

Since all phone usage is prepaid, topping up by purchasing a voucher is a regular task for

all subscribers, irrespective of whether they use ME2U or not. When a transfer is received,

the amount is immediately added to the recipient�s balance. This airtime can immediately be

used to make calls, send airtime to other subscribers, or resell airtime to others. In February

2010 the operator introduced a system by which subscribers could redeem airtime against cash

with dedicated agents. During the period covered by our data, such a system had not yet been

introduced. We have information on the location of all cell towers in Rwanda during our period

of analysis. We can link phone numbers to towers, and thus (crudly) track users�movements in

the country. We use this information to control for location in the econometric analysis below.

a network of agents. At the time of our study, agents had not been recruited yet and shops were not signed up
by the phone company to accept payment in airtime. This does not mean that people could not barter airtime.
Some people �gured out that since they could transfer airtime to anyone with a mobile phone, they could also
purchase something �or solicit cash �from someone who needed airtime. Being a form of barter exchange, this
would require �nding someone who (1) happens to want airtime (i.e., �coincidence of needs�); and (2) with enough
trust to engage in a transaction. The introduction of mobile money moved airtime beyond its role of occasional
and impractical barter currency.
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3.2. Variable de�nition

Because the number of unique subscribers in the data is extremely large, we only use a randomly

selected subset of 5,000 subscribers for our analysis of ME2U adoption and usage.9 For these

subscribers, we observe all their ME2U transfers between the introduction of the service in

September 2006, and June 30th 2008. The end-date T is thus the end of June 2008. During our

sample window, all transfers were peer-to-peer only

For the purpose of our analysis, we aggregate all phone usage information at the weekly

level. This ensures that we take advantage of the detailed time information available in the

data while keeping the size of the dataset manageable. For instance, ME2U usage by network

neighbors is measured as the total number of neighbors who start using ME2U in a given week.

All regressors are lagged by one period (i.e., week). This eliminates the risk of simultaneity bias

since actual usage of ME2U by individual i in week t could not have caused usage by network

neighbors in the previous week. Lagging regressors does not, of course, eliminate the risk of bias

posed by unobserved factors. This issue is discussed more in detail in the empirical section.

We start by de�ning the dependent variable yi;t, which is a dummy that takes value 1 if i

has used ME2U in period t, and 0 otherwise. We consider a subscriber to be active from the

week he receives or makes his �rst transaction �e.g., phone call, SMS, or ME2U transaction.

This de�nes ti, that is, the week from which i is at risk of adopting ME2U. The adoption date

Ti for individual i is de�ned as the week at which the subscriber sends his �rst ME2U transfer.

The reason for de�ning adoption in this way is that sending airtime requires an active decision

while receiving a transfer is passive. In order to send a transfer, the subscriber may also need

to invest time and e¤ort, e.g., to top up his airtime balance or to learn how to make a transfer.

9Limiting our analysis to 5,000 subscribers o¤ers the added advantage that it is extremely unlikely that the
dataset used for analysis includes subscribers who belong to the neighborhood of the 5,000 selected subscribers.
This further minimizes the risk of reverse causation �see below.
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In contrast, the only requirement for a subscriber to receive a ME2U transfer is to have an

activated phone number.

We construct the neighborhood of each subscriber as follows. We look in the data for all

subscribers who, at some point between January 2005 and June 2008, have a phone contact

with i. To be clear, this includes all subscribers in the data, not just those 5,000 subscribers

randomly selected for the empirical analysis. We only use call data with a positive duration

and from mobile to mobile phone �ME2U cannot be sent to a landline or to an international

number.10 We start from the dataset of all phone calls made between January 2005 and July

2008, and we identify the week in which i and j had their �rst phone-based contact. When i

and j make the �rst phone call to each other, the network tie gijt switches from 0 to 1. For

the purpose of the econometric analysis we assume that, once connected, i an j stay connected

during the span of our analysis. The network ties are thus de�ned as:

gijt =

8>>>><>>>>:
1 if i and j had their �rst phone-based contact in period s with s = ti; :::; t

0 otherwise

(3.1)

The neighborhood of subscriber i in period t is the union of all the subscribers for which gijt = 1.

That is:

Nit(g) = fj : gijt = 1g (3.2)

Next, for each neighbor j of i we collate information on whether j made a ME2U transfer in

week t, that is, whether yjt = 1. We then construct a variable �Ait de�ned as the number of

10 In addition, call data is missing for October 2006. This means that all variables derived from call data
information are missing for that month.
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neighbors of i who started sending airtime in week t. Accumulating �Ait over time yields the

cumulative number of adopting neighbors Ait of i at week t.

In the conceptual section we introduced a variable Mit de�ned as a signal that i receives at

time t that the new service exists. In the empirical implementation of the model, we setMit = 1

in the �rst week that i receives a ME2U transfer. Variable mit permanently switches to 1 once

Mit has taken value 1. Finally, variable Sit is de�ned as the number of weeks since i started

using his SIM-ID �that is, Sit � t� ti.

3.3. Descriptive statistics

Our sample consists 5,000 subscribers randomly selected for analysis. Table 1 provides descrip-

tive statistics for the entire sample (column 1); for the subsample of observations before �rst

adoption (column 2); and for the subsample of observations before i receives his �rst airtime

transfer (column 3). The total number of observations is quite large, even when we limit our

attention to 5,000 subscribers. We see that the neighborhood of each subscriber is large, as

could be expected given our generous de�nition of social links. There is ample variation in �Ait

and Ait, both in the entire sample and in the two subsamples.

4. Empirical results

The �rst regression model we estimate is eq. (7.12) in Appendix A, using only observations until

�rst adoption. To eliminate the individual �xed e¤ect �i, we �rst di¤erence the data.11 The

11Fafchamps, Goyal and van der Leij (2010) estimate a model similar to regression (4.1) with �xed e¤ects
instead of taking �rst di¤erences. They point out that the time structure of the dependent variable �a sequence
of 0�s ending with a single 1 �generates a spurious correlation between any trending regressor and the dependent
variable, and recommend detrending all regressors prior to estimation in order to eliminate this bias. The time
structure of the dependent variable in regression (4.1) is similar to theirs, but estimation in �rst di¤erence de
facto eliminates any linear trend in Ait and Sit. It remains that our �ndings could be a¤ected by the presence
of a quadratic time trend in Ait, which would translate in to a linear trend in �Ait. To investigate whether our
results could be a¤ected, we re-estimate regression (4.1) after detrending all �rst-di¤erenced regressors. Results
show absolutely no change in coe¢ cient estimates and standard errors.
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estimated model is a linear probability model of the form:

�yit+1 = �1 + �2�Ait + �3�(S
2
it) + �4�(A

2
it) + �5�(SitAit) + controls+�"it+1 (4.1)

where �xt � xt � xt�1 by de�nition of notation and observations up to the �rst adoption are

used, and controls is a set of control variables.12 ;13 In all regressions below, standard errors are

clustered at the district level.

There remains the perennial issue of possible endogeneity of Ait. There are several potential

sources of endogeneity that we discuss in turn. The �rst potential source is re�ection bias: i

in�uences j and j in�uences i. To mitigate re�ection bias, in the econometric analysis we use

the lagged value of Ait instead of its contemporaneous value. While this may not be enough

to eliminate the bias in general, it should be noted that in the special case where there is no

strategic complementarity, there is also no re�ection e¤ect and thus no re�ection bias. That

is, the re�ection e¤ect is a pure magni�cation e¤ect, which does not invalidate a test of the

null hypothesis that there are no strategic complementarities.14 A second potential source of

endogeneity is correlated e¤ects: an aggregate shock occurs that makes others and myself more

likely to adopt at approximately the same time. An obvious example is a national marketing

campaign targeting the entire country in a given month. To address this problem, we include in

the controls vector separate dummies for each month in the study period (i.e. time dummies).

Correlated shocks could also happen at the district level, e.g., because of a location-speci�c

marketing campaign, or because the usefulness of ME2U increases in a district as a result of an

exogenous shock such as �ood or an earthquake (e.g., Blumenstock, Eagle and Fafchamps 2016).

12This is similar to a duration model with time-varying regressors estimated in discrete form. Instead of using a
maximum likelihood estimator, we opt for a linear probability model so as to be able to remove the individual �xed
e¤ect by �rst-di¤erencing the data. Given the long time series and likely persistence in errors, �rst di¤erencing is
to be preferred to �xed e¤ects.
13By construction, �Sit = 1 , so this variable cannot be included as a regressor.
14A similar point was made by Mo¢ tt (2003).

14



To address this concern, we also consider speci�cations with district-speci�c time dummies. We

also control for correlated e¤ects related to location: adoption patterns may vary across locations

for reasons that have nothing to do with network mechanisms per se. For example, it could be

that airtime transfers are more useful in urban than in rural settings. We thus include in the

set of control variables tower dummy variables indicating the location of i in week t; as well as

time-constant district dummies.

We recognize that our set of controls may not fully capture all potentially confounding

factors. However, adding the control variables should at least mitigate the bias. Moreover,

if the estimates of interest change little as a result of adding controls for observable factors,

we might reasonably suppose that the omission of unobservable factors might not cause severe

bias. This intuitive idea was formalized by Altonji, Elder and Tabler (2005), and developed

further by Oster (2019) who shows how the size of the bias, under certain assumptions, can be

inferred from coe¢ cient and R-squared di¤erences across models with di¤erent sets of control

variables. Drawing on Oster�s insights we will report results from speci�cations with di¤ering

sets of control variables, focusing on movements in the e¤ects of interest. It should be noted

that our speci�cation (4.1) is nonlinear in the potentially endogenous variable, and there is

no straightforward way of making Oster�s formal framework applicable to a nonlinear model.

However, we will report in an appendix estimates of the unobservable selection e¤ect using

Oster�s approach and a linear speci�cation. We will also consider results from a two-stage least

squares estimator of (4.1).

Coe¢ cient estimates of (4.1) are presented in Table 2. Speci�cation [1] contains no control

variables and serves as a benchmark. We see that �2 is signi�cantly positive, �4 is signi�cantly

negative, and �5 is signi�cantly positive. Thus the network e¤ects on the probability of �rst

adoption are nonlinear, and dependent on the number of weeks since i started to use his SIM-ID.
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Remember that, when social learning is about product existence, the relationship between �rst

adoption and network e¤ects should be strongly concave with respect to Ait. In contrast, when

social learning is about product quality, this concavity need not be present and may even be

reversed. Marginal e¤ects @ Pr =@Ait evaluated at various values of Ait are shown below the �rst-

di¤erences (FD) estimates in Table 2. We �nd that marginal e¤ects are positive throughout,

consistent with the presence of network e¤ects. We observe a gradual fall in @ Pr =@Ait as Ait

increases, as suggested by the negative quadratic term coe¢ cient �4. This evidence is prima

facie consistent with social learning about product existence, although the observed concavity

is weaker than that predicted by equation (7.1) (see Appendix A).

Next, we add dummy variables for time, tower, and district to the model. This yields

speci�cation [2] in Table 2. The control variables have some explanatory power, as can be seen

from the increase in the R-squared, but the coe¢ cients and marginal e¤ects of interest, and

their signi�cance levels, change only very marginally. We thus still obsverve a gradual fall a

gradual fall in @ Pr =@Ait as Ait increases, which is consistent with social learning about product

existence. Expanding the set of control variables further, so as to allow for district speci�c

time e¤ects (speci�cation [3]), leads to a small increase the R-squared but only results in trivial

changes to the estimates of interest.

The fact the estimated coe¢ cients and marginal e¤ects shown in Table 2 are stable after the

inclusion of observable controls, suggests that the bias caused by the omission of unobserved

variables is limited. To probe this issue further, we adopt Oster�s (2019) method for assessing

robustness to selection on unobservables. Appendix B contains a short summary of Oster�s

method, and de�nes the relevant parameters; the reader is referred to Oster�s paper for details

about her approach. In order to use Oster�s method, we must omit the terms �(A2it) and

�(SitAit) from the speci�cation, yielding a model of the form �yit+1 = a1+a2�Ait+a3�(S2it)+
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controls +�"it+1: In general, the OLS estimator of a2 is not a consistent estimator of �2, but

the OLS estimate of a2 may be a reasonable estimate of the average marginal e¤ect of Ait on

the likelihood of �rst adoption. However, we are primarily interested in whether the estimate of

a2 appears robust to selection on unobservables, as this sheds some light on whether the results

in Table 2 are robust to selection.

Results are shown in Table B1 in Appendix B. The estimated e¤ect of �Ait is equal to

0.0056 in the model without control variables and 0.00549 in the model with the full set of

control variables included. These estimates are only very marginally lower than the average

marginal e¤ects of Ait based on the nonlinear model (see Table 2). Under the assumption that

unobservable and observable factors are equally related to �Ait (which implies � = 1 in Oster�s

framework), and that Rmax (i.e. the R-squared from a hypothetical regression of the dependent

variable on the observable and unobservable determinants of the dependent variable) is twice

as high as the R-squared for the model with only observed variables included, the bias-adjusted

estimate of the e¤ect of �Ait is equal to 0.0053 (Table B1, col. [3]). Setting � = 2, implying that

the unobservable factors are twice as important determinants of �Ait as the observable factors,

the bias-adjusted e¤ect changes to 0.0051 (col. [4]). Clearly these bias-adjusted estimates di¤er

only trivially from the OLS estimate that is obtained with the model with all controls included

(Table B1, col. [2]). We �nd that the unobservables would have to be more than six times more

important than the observables in determining �Ait for the bias-adjusted e¤ect of �Ait to be

equal to zero, given our assumed value for Rmax. We conclude from this part of the analysis

that our results, for reasonable assumptions regarding the e¤ects of unobservable variables (see

Oster, 2019, for a discussion), appear robust.

In Table 3 we present results for a regression model that incorporates the signal mit that

ME2U exists (see equation 7.13 in Appendix A). Once again, we eliminate the individual �xed
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e¤ect �i by �rst-di¤erencing the data. The estimated model is a LPM of the form:

�yit+1 = �1 + �2�Ait + �3�(S
2
it) + �4�(A

2
it) + �5�(SitAit) + �0�mit

+�1�(Sitmit) + �2�(Aitmit) + �3�(S
2
itmit) + �4�(A

2
itmit) + �5�(SitAitmit)

+controls+�"it+1 (4.2)

where, as in (4.1), we only include observations up to the �rst adoption. The table also presents

estimates of average marginal e¤ects @ Pr =@Ait evaluated at mit = 0 and mit = 1.

E¤ects of Ait remain signi�cant throughout, although they are smaller when mit = 1 than

when mit = 0. This is suggestive of a hybrid model in which social learning serves two purposes:

circulating information about product existence, and about product quality. Given that network

e¤ects remain relatively large even after mit = 1 suggests that, of the two, di¤using information

about quality accounts for a signi�cant share of social learning e¤ects.15 Similar to the results

in Table 2, our estimates and signi�cance levels of interest hardly change at all as a result

of adding control variables to the regression. Results, available on request, from a robustness

analysis using Oster�s (2019) approach suggest very marginal bias adjustments for reasonable

values of � and Rmax.

We now seek to rule out that observed network e¤ects on �rst adoption are purely due to

network externalities, not to social learning. To this e¤ect, we estimate a model that includes ob-

servations before and after �rst usage (see equation 7.14 in Appendix A). The model is estimated

15As pointed out by an anonymous referee, the frequency of contact could a¤ect the rate of di¤usion of infor-
mation. We can shed some light on this issue empirically. If we add to the set of explanatory variables a variable
measuring the total number of phone calls made by and received by i in a given week �a reasonable proxy for
frequency of contact - this has a positive e¤ect on �rst adoption (statistically signi�cant if measured in t+ 1 i.e.
contemporaneous with adoption; not quite statistically signi�cant if lagged by one period). More importantly, we
�nd that adding this variable proxying for frequency of contact does not a¤ect the outcome of the test of interest:
network e¤ects remain positive and statistically signi�cant even when mit = 1 in this case.
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in �rst di¤erence to eliminate unobserved heterogeneity �i, i.e., it is of the form:

�yit+1 = �1 + �2�Ait + �3�(S
2
it) + �4�(A

2
it) + �5�(SitAit) + 
0�zit

+
1�(Sitzit) + 
2�(Aitzit) + 
3�(S
2
itzit) + 
4�(A

2
itzit) + 
5�(SitAitzit)

+controls+�"it+1 (4.3)

where all observations are used and zit = 1 if subscriber i has used ME2U before time t.

Regression results and marginal e¤ects are presented in Table 4. As should be, the � coe¢ cient

estimates are very similar to those reported in Table 2. We �nd that the marginal e¤ect (which

is estimated at sample means of the regressors) is much lower after �rst adoption, which con�rms

that social learning matters. What is less anticipated is that, after �rst adoption, network e¤ects

are on average negative, implying that, if anything, airtime transfers are strategic substitutes

across network neighbors. This result is obtained without and with control variables included

(Table 4, speci�cations [1]-l[3]).

To check the robustness of this �nding, we re-estimate (4.3) with the set of control variables

expanded to include a measure of the amount received by i. The logic is as follows. We begin by

noting that �Ait captures airtime transfers made by i�s network neighbors at time t� 1. Some

of these transfers may have been made to i. If i feels an obligation to reciprocate or pass on

the transfers received, we expect to observe a mechanical positive correlation between �yit+1

and �Ait. If, on the other hand, i receives transfers because he or she is at the receiving end of

an altruistic relationship (e.g., a migrant sending remittances to his family, a husband sending

airtime to his wife or children) and an airtime transfer is made when the recipient is in need

of assistance, �yit+1 and �Ait may be negatively correlated in the sense that the more i needs

assistance, the more he or she receives airtime transfers, hence the larger �Ait. At the same
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time, the more i needs assistance, the less i can help others and hence the lower �yit+1 is.

To investigate whether this is what drives the negative @ Pr(yit+1=1jzit=1)@Ait
after �rst adoption,

we reestimate (4.3) adding to the set of explanatory variables the amount of airtime transfers

received at t. We have focused on one auxiliary mechanism namely the need for assistance.

Consistent with our hypothesis, we �nd a negative and statistically signi�cant e¤ect of amount

received on usage following �rst adoption (Table 4, speci�cation [4]). However, this addition to

the set of explanatory variables doesn�t a¤ect the estimated average marginal e¤ect of neighbor

usage, which remains negative and statistically signi�cant. From this we conclude that the

strategic substitution e¤ect of network neighbors is not simply due to transfers received by i

from these network neighbors.

Network externalities are typically believed to generate strategic complement e¤ects. How

could airtime transfers be strategy substitutes after �rst adoption? It is di¢ cult to say for sure

from the data at our disposal. But strategic substitution e¤ects have been discussed in the

theoretical literature on networks (e.g., Jackson 2009, Bramoullé, Kranton and d�Amours, 2014)

and evidence of network strategic substitutes has been provided in the case of the adoption of

business practices (e.g., Fafchamps and Söderbom, 2014). In our context, strategic substitutes

may arise from free-riding. To illustrate, suppose i has two network neighbors j and k. If j has

given airtime to k at time t, there is less pressure on i to give at time t + 1. Individual i may

feel exonerated even if k is not a direct neighbor of i. This may be what explains why neighbors

of individuals who send transfers send fewer transfers themselves.

Whatever the reason for strategic substitution e¤ects, the main lesson we draw from our

analysis is that, prior to �rst adoption, networks serve an important social learning role. More-

over, given the presence of negative externalities, the importance of social learning may be

underestimated by regressions (4.1) and (4.2). For instance, if we combine the two estimates
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from the column 3 of Table 4, we would conclude that @ Pr(yit+1=1jzit=0)@Ait
underestimates the net-

work e¤ect of social learning by 39% (i.e., 0.0051/(0.0051+0.0033) - 1). The results in the other

columns of Table 4 also suggest a signi�cant underestimation of social learning from models

(4.1) and (4.2).

4.1. Robustness to endogeneity: Two-stage least squares estimates

Recall that our empirical speci�cations take the form �yit+1 = ��Xit+controls+�"it+1, where

Xit is a vector containing linear, quadratic and interacted terms of Ait. If there are strategic

complementarities to usage, the e¤ect of Ait is positive. However, as noted above, unobservable

factors could lead to bias in the OLS estimator, due to confoundedness. A reasonable bench-

mark case of confoundedness is contemporaneous positive correlation between Ait and "it, i.e.

E (Ait"it) > 0. This could represent a case where, for example, there is an unobserved positive

shock to the usefulness of the technology that is common across all neighbors in the network.

It should be noted, however, that this doesn�t necessarily imply E (�Ait�"i;t+1) > 0 . Indeed,

E (Ait"it) > 0 could imply E (�Ait�"i;t+1) < 0, in which case our estimator of the e¤ect of

interest may actually be downward biased. In this section we probe the issue of confoundedness

further using a two-stage least squares (2SLS) approach. We do not have extraneous instruments,

but we can still obtain 2SLS estimates that can be informative of the relative importance of con-

founders. It can be noted, for example, that under the assumption that E (�Ai;t�1�"i;t+1) = 0,

the model is identi�ed even if E (Ait"it) 6= 0; provided that �Ai;t�1is a relevant instrument.

In our instrumental variable approach we thus use lagged values of the change in neighbor

usage, and similarly lagged values of the change in quadratic and interacted terms of Ait; as

instruments, whilst treating all variables containing Ait are as econometrically endogenous. We

consider our three main models, i.e. �rst adoption, �rst adoption distinguishing prior exposure
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to the technology, and usage after �rst adoption (in all cases with the full set of control variables

included).

Results are shown in Table 5. For the model of �rst adoption, �2 is signi�cantly positive, �4 is

signi�cantly negative, and �5 is signi�cantly negative. We �nd that marginal e¤ects are positive

throughout, and we observe a gradual fall in @ Pr =@Ait as Ait increases. These results are thus

qualitatively the same as those obtained by means of OLS (Table 2, speci�cation [1]). We can

reject the null hypothesis that the model is underidenti�ed at the 5% level, indicating that the

instruments are relevant.16 We conclude that there is no evidence that the OLS estimates of

the model of �rst adoption are upward biased. For the model of �rst adoption distinguishing

prior exposure to the technology (speci�cation [2]), there are six endogenous variables (since

Ait enters several interaction terms), so we need six relevant instruments for identi�cation. We

cannot reject the null hypothesis that this model is underidenti�ed, suggesting that we do not

have six relevant instruments in this case. The average marginal e¤ect of Ait is not signi�cant

when mit = 0, and further analysis of the data con�rms that the instruments are indeed weak in

the subsample of observations for whichmit = 0. We conclude that the results for speci�cation [2]

should be interpreted with caution. We have also estimated this model using a control function

appproach, which is more parsimonious (and more restrictive) than 2SLS, and may be more

e¢ cient (see Wooldridge, 2015, for a discussion).17 The results, which are available on request,

appear to be more robust than the 2SLS estimates, and do not suggest that the OLS estimates

in Table 3 are upward biased.18 Finally, for the model of �rst adoption and subsequent usage

16We use Stata and the command ivreg2 to obtain 2SLS estimates. The underidenti�cation test reported as
part of the ivreg2 output is an LM test of whether the equation is identi�ed, i.e., that the excluded instruments
are relevant.
17The control function approach involves adding the residual from a �rst-stage regression of �Ait on all exoge-

nous variables to the set of explanatory variables, and estimating the augmented model by means of OLS. This
is a way of "controlling for" the endogeneity of �Ait using the residual from the �rst stage. With this approach,
we only require �Ai;t�1 to be a relevant instrument, which is clearly less demanding than the requirements
underlying 2SLS.
18We obtain strong evidence that �Ai;t�1 is a relevant instrument. The average marginal e¤ect of Ait is
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(speci�cation [3] in Table 5), we can reject the null hypothesis that the model is underidenti�ed,

indicating that the instruments are relevant. We obtain a positive and statistically signi�cant

average e¤ect of Ait on �rst adoption, and a negative and signi�cant average e¤ect on usage

following �rst adoption. Both results are consistent with the OLS results reported earlier in this

paper.

5. Conclusion

This study is based on a large administrate dataset covering the universe of phone calls and

airtime transfers in an entire country over a four year period. We examine the pattern of

adoption of a new phone service over time. This phone service, called ME2U, allows a phone

user to transfer airtime from their phone to someone else�s. This early form of mobile money

was introduced in Rwanda in 2005 by the then de facto monopolist in cell phone services. As a

result, we observe the entire universe of peer-to-peer airtime transfers that took place in Rwanda

over a four year period.

We start by documenting strong network e¤ects on adoption of the new service: increased

usage of ME2U by social neighbors predicts a higher probability of transferring airtime to another

user. We then seek to narrow down the possible sources of these network e¤ects by distinguishing

between social learning and strategic complementarities in the use of the service. Within social

learning, we also seek to di¤erentiate between learning about existence of the new product from

learning about its quality or usefulness. We �nd robust evidence suggestive of social learning

both for the existence and the reliability or usefulness of the new service. In contrast, we �nd

that network e¤ects turn negative after �rst adoption, suggesting that airtime transfers are

strategic substitutes among network neighbors, rather than strategic complements. This implies

estimated at 0.010 (z-value 10.6) when mit = 0, and 0.008 (z-value 10.2) when mit = 1 (the standard errors
underlying these results have not been corrected to take into account that the residual is a generated regressor).
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that the positive network e¤ects observed in the adoption decision are entirely due to social

learning and are not driven by strategic complementarities in usage. Our results thus provide

useful insights in the process by which products and services may di¤use on social networks.

In our study, learning about existence and quality are important mechanisms, while strategic

complementarities are not. It would be interesting to investigate similar mechanisms for other

types of services and products, but we leave this for future research.
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Figure 1: Number of SIM-ID’s adopted: August 2016 – December 2008 

 
 

 

Figure 2: Proportion of adopters and users 
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Table 1
Summary statistics

(1) (2) (3) 
Full sample Before adoption Before adoption & 1st in-transfer

Mean Median Std dev Mean Median Std dev Mean Median Std dev
N(it) 264 202 243 102 66 115 89.3 57 99.3

A(it) 73.3 51 76.3 24.9 13 33.7 20.6 11 27.8

ΔA(it) 1.71 1 1.95 1.55 1 1.92 1.45 1 1.82

Amount received, if positive 457 200 1478 642.3 223 2682

Number of transfers received 0.12 0 0.55 0.05 0 0.35

Number of neighbors from 0.09 0 0.36 0.04 0 0.21
   whom i received a transfer
Amount sent, if positive 589 200 1735

Number of transfers sent 0.19 0 1.52

Number of neighbors to  0.15 0 0.97
   whom i sent a transfer
Number of phone calls by i 21.9 12 31.3 17.7 10 26.8 16.5 9 25.1

Weeks with SIM card 43.4 42 25 20 16 14.7 17.3 14 12.3

Observations 376372 91889 71835



Table 2
First Adoption: First Difference Estimates

(1) (2) (3)
FD Estimates Coef. s.e. Coef/s.e. Coef. s.e. Coef/s.e. Coef. s.e. Coef/s.e.
ΔA(it) 0.0023602 0.0007445 3.17 0.0018 0.00077 2.35 0.0018 0.0007723 2.35
ΔS(it)^2 0.0000827 0.000043 1.92 -0.00076 7.1E-05 -10.7 -0.00074 7.8E-05 -9.51
ΔA(it)^2 -0.0000332 3.33E-06 -9.99 -3.2E-05 5.0E-06 -6.44 -0.000031 4.8E-06 -6.39
Δ[A(it)S(it)] 0.0002695 0.000029 9.31 0.00029 4.3E-05 6.81 0.00028 4.5E-05 6.26

Marginal effects of A(it), at different levels of A(it)
A(it) = 0 0.0078 0.0004 17.55 0.0077 0.0005 14.4 0.0075 0.0005 14.5
A(it) = 20 0.0065 0.0004 15.65 0.0064 0.0004 14.8 0.0063 0.0004 15.1
A(it) = 40 0.0051 0.0004 12.13 0.0051 0.0004 12.4 0.0050 0.0004 13.1
A(it) = 60 0.0038 0.0005 8.05 0.0039 0.0005 8.01 0.0038 0.0004 8.49
A(it) = 80 0.0025 0.0006 4.5 0.0026 0.0006 4.23 0.0026 0.0006 4.50
A(it) = 100 0.0011 0.0006 1.78 0.0013 0.0008 1.70 0.0013 0.0007 1.85

Average marginal effect of A(it)
A(it) = 25.4 0.0061 0.0004 14.83 0.0061 0.0004 14.46 0.0059 0.0004 14.92

Controls
year x month N Y N
district N Y N
tower N Y Y
year x month x district N N Y

R-squared 0.007 0.037 0.044
Observations 96,266 96,266 96,266
Note: Standard errors are clustered at the district level (M=27). Marginal effects are evaluated at sample means of regressors (in levels).



Table 3
Generalized First Adoption Model: First Difference Estimates

(1) (2) (3)
FD Estimates Coef. s.e. Coef/s.e. Coef. s.e. Coef/s.e. Coef. s.e. Coef/s.e.
ΔA(it) 0.0035 6E-04 5.45 0.0028 6E-04 4.62 0.0029 6E-04 4.63
ΔS(it)^2 0.0002 4E-05 5.49 -0.0006 5E-05 -12.56 -0.0006 6E-05 -10.98
ΔA(it)^2 0.0000 3E-06 -10.5 -0.00003 4E-06 -8.02 -0.00003 4E-06 -7.72
Δ[A(it)S(it)] 0.0002 2E-05 8.3 0.0002 3E-05 7.90 0.0002 3E-05 7.12
Δm(it) 0.0699 3E-02 2.32 0.0237 3E-02 0.72 0.0255 3E-02 0.78
Δ[m(it) x S(it)] 0.0102 3E-03 3.69 0.0144 3E-03 4.32 0.0141 3E-03 4.23
Δ[m(it) x A(it)] -0.0051 5E-04 -9.82 -0.0050 7E-04 -7.60 -0.0050 7E-04 -7.56
Δ[m(it) x S(it)^2] -0.0002 6E-05 -3.36 -0.0003 8E-05 -3.96 -0.0003 8E-05 -3.88
Δ[m(it) x A(it)^2] 0.0000 3E-06 1.17 0.000003 3E-06 0.85 0.000003 3E-06 0.83
Δ[m(it) x A(it) x S(it)] 0.0001 3E-05 4.08 0.0001 3E-05 3.89 0.0001 3E-05 3.90

Average marginal effects of A(it)
m(it) = 0 0.0058 0.0005 11.88 0.0059 0.0005 12.71 0.0058 0.0004 13.18
m(it) = 1 0.0035 0.0004 7.98 0.0037 0.0005 8.01 0.0036 0.0004 8.04

Controls
year x month N Y N
district N Y N
tower N Y Y
year x month x district N N Y

R-squared 0.012 0.042 0.049
Observations 96,266 96,266 96,266
Note: Standard errors are clustered at the district level (M=27). Marginal effects are evaluated at sample means of regressors (in levels).



Table 4
Adoption & subsequent usage: First Difference Estimates

(1) (2) (3) (4)
Coef. s.e. Coef/s.e. Coef. s.e. Coef/s.e. Coef. s.e. Coef/s.e. Coef. s.e. Coef/s.e.

ΔA(it) 0.0049 0.0007 6.9 0.0034 0.0007 4.95 0.0033 0.0007 4.91 0.0033 0.0007 4.92
ΔS(it)^2 0.0005 3E-05 17.26 0.0001 4E-05 2.26 0.0001 4E-05 2.09 0.0001 4E-05 2.18
ΔA(it)^2 -1E-05 3E-06 -4.28 -1E-05 3E-06 -4.23 -1E-05 3E-06 -4.29 -1E-05 3E-06 -4.24
Δ[A(it) x S(it)] 4E-05 2E-05 1.74 0.0001 2E-05 3.5 0.0001 2E-05 3.50 0.0001 2E-05 3.53
Δ[z(it) x S(it)] -0.0189 0.0016 -11.69 -0.0475 0.0024 -19.44 -0.0480 0.0026 -18.52 -0.0474 0.0026 -18.44
Δ[z(it) x A(it)] -0.0098 0.0013 -7.61 -0.0078 0.0012 -6.5 -0.0077 0.0012 -6.48 -0.0075 0.0012 -6.33
Δ[z(it) x S(it)^2] -0.0005 3E-05 -16.34 -0.0001 4E-05 -3.8 -0.0001 4E-05 -3.57 -0.0001 4E-05 -3.65
Δ[z(it) x A(it)^2] 1E-05 3E-06 4.84 1E-05 3E-06 4.58 1E-05 3E-06 4.64 1E-05 3E-06 4.59
Δ[z(it) x A(it) x S(it)] -2E-05 2E-05 -0.9 -0.0001 2E-05 -2.66 -0.0001 2E-05 -2.70 -0.0001 2E-05 -2.74
Amount_received(it) 4E-06 3E-06 1.38
z(it) x Amount_received(it) -1E-05 5E-06 -3.04

Average marginal effects of A(it)
z(it) = 0 0.0049 0.0004 11.49 0.0052 0.0005 11.4 0.0051 0.0004 11.44 0.0051 0.0004 11.46
z(it) = 1 -0.0038 0.0006 -6.01 -0.0033 0.0006 -5.3 -0.0033 0.0006 -5.22 -0.0032 0.0006 -4.97

Controls
year x month N Y N N
district N Y N N
tower N Y Y Y
year x month x district N N Y Y

R-squared 0.006 0.007 0.008 0.008
Observations 361,616 361,616 361,616 361,616
Note: Standard errors are clustered at the district level (M=27). Marginal effects are evaluated at sample means of regressors (in levels).



Table 5
Robustness to Endogeneity: First Difference 2SLS Estimates

(1) (2) (3)
FD Estimates Coef. s.e. Coef/s.e. Coef. s.e. Coef/s.e. Coef. s.e. Coef/s.e.
ΔA(it)* 0.0069 0.0017 4.13 0.0163 0.0116 1.41 0.0076 0.0016 4.68
ΔS(it)^2 -0.0008 0.0001 -12.06 0.0014 0.0012 1.16 0.0001 0.0001 2.19
ΔA(it)^2* -0.00005 4E-06 -10.23 0.0001 0.0002 0.38 -2E-05 8E-06 -2.49
Δ[A(it)S(it)]* 0.0003 4E-05 9.65 -0.0012 0.0010 -1.21 0.0001 3E-05 2.36
Δm(it) 0.0711 0.0898 0.79
Δ[m(it) x S(it)] -0.0231 0.0339 -0.68
Δ[m(it) x A(it)]* 0.0177 0.0157 1.12
Δ[m(it) x S(it)^2] -0.0024 0.0017 -1.44
Δ[m(it) x A(it)^2]* -0.0002 0.0002 -1.02
Δ[m(it) x A(it) x S(it)]* 0.0020 0.0013 1.47
Δ[z(it) x S(it)] -0.0335 0.0034 -9.78
Δ[z(it) x A(it)]* -0.0154 0.0021 -7.36
Δ[z(it) x S(it)^2] -0.0002 0.0001 -3.26
Δ[z(it) x A(it)^2]* 2E-05 8E-06 2.95
Δ[z(it) x A(it) x S(it)]* -0.0001 3E-05 -1.84

Note: Standard errors are clustered at the district level (M=27). All variables containing A(it) are treated as endogenous, as indicated by *. 
Lagged differenced values of endogenous explanatory variables are used as instruments. The table continues on the next page.



Table 5 continued
(1) (2) (3)

Marginal effects of A(it), evaluated at sample means of the regressors
A(it) = 0 0.0137 0.0015 9.35
A(it) = 20 0.0119 0.0014 8.77
A(it) = 40 0.0101 0.0013 7.98
A(it) = 60 0.0082 0.0012 6.95
A(it) = 80 0.0064 0.0011 5.66
A(it) = 100 0.0046 0.0011 4.14

m(it) = 0 -0.0055 0.0081 -0.68
m(it) = 1 0.0413 0.0064 6.47

z(it) = 0 0.0082 0.0015 5.55
z(it) = 1 -0.0062 0.0012 -5.31

Underidentification test (p-value) 0.022 0.237 0.0147

Controls
tower Y Y Y
year x month x district Y Y Y

Note: Standard errors are clustered at the district level (M=27). All variables containing A(it) are treated as endogenous, as indicated by *. 
Lagged differenced values of endogenous explanatory variables are used as instruments.



7. Appendix A. Conceptual framework

The purpose of this Appendix is to provide a theoretical framework to support our empirical

analysis. The focus of our attention is adoption, that is, the �rst usage of a new product

or service by someone who has not used it before. We are interested in how social networks

in�uence adoption. To formalize this process, let yit = f0; 1g be a dichotomous variable equal

to 1 if individual i uses the product at time t, and 0 otherwise. We think of time as a sequence

of time intervals, i.e., our model is in discrete time. Adoption describes the �rst time at which

yit > 0 for individual i. Let ti denote the time at which individual i becomes �at risk�of adopting

the product.19 Further let Ti denote the time at which individual i �rst uses the product. Finally,

let T denote the last data period for which we have information. By de�nition, Ti > T for an

individual who, by time T , has not yet used the product.

As we will argue below, usage after adoption provides useful information as well. Usage yit

can therefore be divided into two vectors or periods: the time until �rst usage fyiti ; :::yiTig; and

usage after that fyiTi+1; :::yiT g. By construction, fyiti ; :::yiTig is either a sequence of 0�s ending

with a single 1, or a string of 0�s (for someone who never adopts). The length of each of the two

i vectors varies across individuals.

We are interested in identifying predictors of yit that depend on the adoption and usage

behavior of the social neighbors of i. To do so e¤ectively, we present a few simple concepts

before articulating our testing strategy. We �rst discuss social learning, before introducing

network externalities. We assume throughout that the researcher has information about yit.

19This can be the time at which the new product is introduced, or the time at which i acquires a device for
which product is useful.
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7.1. Social learning about product existence

There is much to learn from simple models of social learning. Let us �rst focus on information

about the existence of the product. We then turn to information about the qualities of the

product. We end with a short discussion of experimentation, which is adoption purely for the

purpose of eliciting information about product quality. The focus of this section is to use simple

models to develop intuition about social learning that we can then take to the data.

Learning about the existence of the new product closely resembles a contagion process (see

e.g. Bass, 1969). Without information about the existence of the product, the agent simply

cannot adopt. Hence having been exposed to information about the product is a necessary

condition for adoption. This information can come from two sources: (1) information received

from various sources outside the social network (e.g., ads on billboard, radio, TV, junk mail,

or newspaper); and (2) information received from the social network (e.g., friends, relatives,

co-workers).

Let �vt denote the probability of receiving information from outside the social network in

location v at time t. We take this probability as given and we do not seek to model its deter-

minants. But we think of it as having a strong local component, capturing the local nature of

advertisement coverage.

A simple model for the probability of receiving information from a social source at time t

can be formulated as:

Pr(i receives information from network at t+ 1) = 1� (1� q)�Ait

where �Ait is the number of neighbors of i who have started using the product in period t �

and thus have become aware of its existence and can relay this information to i, something each
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of them does with probability q. We assume that the researcher observes �Ait, or a close proxy.

The cumulative probability that i has received information about the existence of the product

is thus an increasing and convex function of the cumulative number of i�s neighbors who have

adopted at t �and thus could have passed information about the product to i with probability

q during that time period.

Let us now combine the two sources of information. If we assume independence between �vt

and the signal received from each neighbor, the probability of not being informed within period

t is (1 � �vt)(1 � q)�Ait . Now let us assume that, once i is informed that the product exists, i

adopts with probability pi. This is the probability of usage in any given period, conditional on

knowing about the product. For some individuals this probability is low; for others it is high.

Over time the likelihood of having heard of the product increases. Formally, the probability

of not having heard of the product between time ti and t is:

Pr =

tY
s=ti

(1� �vs)(1� q)�Ais = (1� q)Ait
tY

s=ti

(1� �vs)

where Ait �
Ps=t
s=ti

�Ais is the cumulative number of adopting neighbors between ti and t, and

ti is the time at which i starts being at risk of being exposed to information about the product�s

existence. If �vt is constant over time for location v, the formula simpli�es to:

Pr = (1� q)Ait(1� �v)Sit

where Sit � t� ti is the time elapsed between ti and t:

The probability that agent i adopts the product at time t is the probability that he has been
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informed times pi:

Pr(yit+1 = 1jfyiti ; :::; yitg = f0; :::; 0g) = [1� (1� q)Ait(1� �v)Sit ]pi (7.1)

Adoption can take place even for someone who has no social neighbors, or whose neighbors

have not adopted. The model predicts that the likelihood of adoption increases in a systematic

fashion over time, without or without adopting neighbors. This is a mechanical e¤ect: as time

passes, the agent has more and more chances of hearing about the product. The probability of

�rst adoption increases with time since inception Sit and with Ait, although in both cases the

e¤ect is concave: the derivative of the probability of adoption w.r.t. Sit and Ait falls with Sit

and with Ait. This is because having heard about the product once is enough to know of its

existence.

Once the product has been used once, i may continue using it with a certain probability.

But if the only source of network e¤ects is social learning about the existence of the product,

the probability of usage after �rst adoption is no longer a function of the number of adopting

neighbors. Formally we have:

Pr(yit+1 = 1jyis = 1 for some s < t) = pi + "it+1 (7.2)

Thus once i has learned about the existence of the product, the data generating process

shifts from (7.1) to (7.2). An identical prediction is made if the researcher observes a signal Mit

that is equal to 1 when individual i has unambiguously been made aware of the existence of the

new product, and 0 otherwise:

Pr(yit+1 = 1jMis = 1 for some s < t) = pi + "it+1 (7.3)
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To recap, when network neighbors circulate information about product existence and nothing

more, the probability of adoption increases in the number of adopting neighbors, but at a

decreasing rate. After �rst adoption or after becoming aware of the product, subsequent usage

does not depend on the number of adopting neighbors.

7.2. Social learning about product quality

We get di¤erent predictions if social learning is about product quality. In this case, the decision

to adopt at time t depends not on the probability of receiving a signal within a given time

interval, but rather on the cumulative information about the product received up to time t.

To keep the same notation, let �vt now denote the probability that individual i receives an

independent signal about the quality of the product at time t. This probability can vary over

time t and across locations v. To keep things simple, let us assume that this signal takes only

two values, 0 and 1, i.e., a bad signal or a good signal. Let � denote the true probability that

the product performs: a high � good always performs well, while a low � good often performs

poorly. Individuals di¤er in how much they value unobserved quality � �more about this later.

We assume that the posterior belief hit of individual i at time t is simply the sample estimate

of the unknown Bernoulli parameter � based on the information available to i at time t.20 Let

Nit be the number of signals received by i at up to t and let N1
it be the number of signals with

value 1, i.e., the number of good signals. We have:

hit =
N1
it

Nit
(7.4)

20This is simpli�ed Bayesian approach �see Mood, Graybill and Boes (1974) p. 342 for the correct Bayesian
estimator of a Bernouilli parameter. But this simple approach su¢ ces for our purpose.
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The variance of this belief is approximately given by:

v2it =
1

Nit
hit(1� hit) (7.5)

As sample size increases, hit tends to � and v2it tends to 0.
21

Since we do not observe what signal people observe, we never know what N1
it is. But we can

write:

hit = �+ eit with eit ~ (0; �(1� �)=Nit)

In other words, the information people have is, on average, unbiased and the variance of their

beliefs shrinks over time.

If we allow agents to hold a prior belief hi0, this belief can be regarded as coming from a

sample of observations Ni0 that we do not observe. The point estimate of this belief marks how

biased the prior belief is, and the size of the sample determines how con�dent the agent is in his

prior belief. This can be formalized as follows:

hi0 =
N1
i0

Ni0

hbit =
N1
i0 +N

1
it

Ni0 +Nit
= hi0

Ni0
Ni0 +Nit

+ hit
Nit

Ni0 +Nit

v2it =
1

Ni0 +Nit
hbit(1� hbit)

where hbit now denotes the posterior belief of agent i at t.

We do not observe hi0 and Ni0. If we let the number of signals received be denoted nit,

21The above formula for the variance is obtained by combining Mood et al. (1974) p. 236 with p. 89.
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beliefs can be written as following a model of the form:

qbit = �




 + nit
+ �

nit

 + nit

+ ebit with e
b
it~(0; �

2
it)

�2it =
1


 + nit
(�





 + nit
+ �

nit

 + nit

)(1� � 



 + nit
� � nit


 + nit
)

As with uninformed priors, beliefs hbit tend to � over time, but they show some persistence

around initial priors.22

Having modelled learning, we now turn to adoption. We start without prior beliefs. We

assume that individuals di¤er in the threshold value of � that they require before adopting.

At �rst glance, it seems that we could simply assume that people adopt if their estimate of �

is larger than some value � i with 0 < � i < 1. This decision rule, however, is too crude. It

predicts that people adopt after a single good signal since, in that case, their posterior belief

is hi1 = 1 � � i for any � i. This is clearly an unappealing decision rule because an estimate

of � based on a single observation is very imprecise. To capture this intuition in the simplest

possible way, we posit that the expected utility of adoption E[Uit(yit = 1)j!it] can be written

as a mean-variance form. We have:

yit+1 = 1 i¤ hit �Rv2it � � i

where R is a risk aversion parameter and � i is now a threshold value of expected utility. Since

we do not observe hit and v2it directly, we replace them by formulas (7.4) and (7.5) above and

22The variance �2it is not monotonic over time, however. Intuition is as follows. Imagine the agent starts with
a strong prior far from � (a strong prior means Ni0 is large). Initially �2it is quite small because it is dominated
by the strong prior. As more information is revealed, posterior beliefs are progressively pulled away from prior
hi0 and �2it increases. Eventually posterior beliefs settle on � and the variance falls, dominated now by Nit.
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we get:

Pr(yit+1 = 1jfyiti ; :::; yitg = f0; :::; 0g) = Pr
�
(�� � i)�R

�(1� �)
nit

� �eit+1
�

(7.6)

Equation (7.6) shows that the probability of adoption increases with nit. The intuition is

straightforward: the variance term shrinks and vanishes at the limit, and this raises the ex-

pected utility of adoption for some people. Not everybody adopts, however, because � is not

higher than � i for everyone.

We can now generalize the above to the case where people hold prior beliefs. We now have:

Pr(yit+1 = 1jfyiti ; :::; yitg = f0; :::; 0g) = (7.7)

Pr

�
�





 + nit
+ �

nit

 + nit

+R
1


 + nit
(�





 + nit
+ �

nit

 + nit

)(1� � 



 + nit
� � nit


 + nit
) � � it � ebit+1

�

To close the model, we need to stipulate the data generating process of nit, the number

of signals received. In practice, we do not observe nit but, by analogy with the previous sub-

section, we expect it to be an increasing function of time since inception Sit and of the number

of adopting neighbors Ait. To show this formally, let us assume that in each period individual i

receives a signal from outside his network with a constant location-speci�c probability �v,23 and

with probability q individual i receive a signal from any newly adopting neighbor. The expected

number of signals received at time t is a sum of two binomial processes. The average number of

signals received outside the network up to time is given by a binomial process with parameter

�v and Sit, and is simply �vSit. The average number of signals from the networks is qAit. Thus

we have:24

23To keep the algebra simple and derive the intuition clearly, we ignore here the possibility of a time-varying
signal probability.
24Where, given our assumptions, v2 can in principle be calculated from the variance formula for binomial

distributions.
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nit = �vSit + qAit + uit with uit~(0; v2) (7.8)

Without prior beliefs, the probability of adoption can thus be written:

Pr(yit+1 = 1jfyiti ; :::; yitg = f0; :::; 0g) = Pr
�
(�� � i)�R

�(1� �)
�vSit + qAit + uit

� �eit+1
�

(7.9)

Equation (7.9) shows that the probability of �rst adoption is monotonically increasing in Sit

and Ait.

The probability of adoption with prior beliefs is similarly obtained by replacing nit in equation

(7.7) by its value given by (7.8). Our earlier observation remains valid: with strong prior beliefs,

the variance term that multiplies R in equation (7.7) can initially be quite small. If the prior

belief hi0 is high and its variance v2i0 is small, individual i will adopt immediately. The social

learning model therefore predict that individuals with strong optimistic priors adopt early. So

doing, they receive information about the quality of the product, information that they may

circulate among their social circle. If the information is su¢ ciently bad, i.e., if revealed quality

is less than � i, early adopters will abandon the new product, and the information that di¤uses

among the social network will discourage adoption by others. If the information is su¢ ciently

good, its di¤usion in the network will progressively raise posterior beliefs according to equation

(7.7) and adoption will spread among individuals with a su¢ ciently high valuation � i for the

product. Because the accumulation of information eventually reduces the variance of posterior

beliefs, adoption is an increasing function of the information received, and thus of the number

of adopting neighbors.

What happens after an individual has adopted the product once? In the context of our

empirical application, it is natural to assume that usage reveals a lot of relevant information
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about the product. To capture this idea in a stylized way, let us imagine that using the product

once perfectly reveals the quality of the product. It follows that usage is now driven by � i; social

learning no longer matters. Formally we have:

Pr(yit+1 = 1jyis = 1 for some s � t) = Pr ((�� � i) � �eit+1) (7.10)

which does not depend on time or adopting neighbors.

What happens if individual i is observed to receive an unambiguous signal revealing the

existence of the product? In this case, this signal does not, by itself, dispel uncertainty about

the quality of the product and thus should not eliminate the role of social learning in reducing

uncertainty about the net bene�t of adoption. In other words, adoption continues to follow

equation (7.7) after Mit = 1. This is di¤erent from what happens when social learning only

a¤ects knowledge about the existence of the product, and thus provides a way of identifying

which type of social learning is present in the data.

To summarize, when social learning is purely about product quality, the likelihood of adop-

tion is predicted to increase over time as the number of adopting neighbors rises, irrespective of

whether the individual received a signal about product existence or not, that is, whetherMis = 1

or not. After �rst adoption, however, the role of social learning essentially disappears and the

probability of continued usage is no longer a function of the number of adopting neighbors. In

contrast, if social learning is solely about product existence, the data generating process switches

to (7.3) after Mis = 1. This makes it possible to test the two learning models against each other

even in a reduced form. If social learning combines both elements, then we expect the coe¢ cient

of Ait to be signi�cantly lower after Mis = 1, but to remain positive until �rst adoption.
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7.3. Network externalities and strategic complementarities

Social learning can be seen as a network externality: individuals bene�t from the information

accumulated and shared by others. We have shown that social learning generates a correlation

between neighbors�adoption and own adoption by individual i. There are many other network

externalities that do not involve learning. Since we do not have any information to further

disentangle di¤erent types of strategic complementarities, we need not discuss them in more

detail. The main distinction between strategic complementarities and social learning is that the

e¤ect of social learning disappears after i has used the product at least once, while the e¤ect

of other strategic complementarities does not. This simple observation forms the basis of our

identi�cation strategy between social learning and other network externalities.

7.4. Estimation

We now demonstrate how these ideas can be turned into an estimation strategy. The reduced

form for models (7.1) and (7.7) is similar and can be written as:

Pr(yit+1 = 1jfyiti ; :::; yitg = f0; :::; 0g) = �i + �1Sit + �2Ait + "it+1 (7.11)

Pr(yit+1 = 1jfyiti ; :::; yitg = f0; :::; 0g) (7.12)

= �i + �1Sit + �2Ait + �3S
2
it + �4A

2
it + �5SitAit + "it+1

Model (7.11) is a simple linear approximation of the two structural models (7.1) and (7.7). Pa-

rameter �i captures variation in product usefulness across individuals. With any social learning

we expect the marginal e¤ect adopting neighbors to be positive, i.e., dPr
dAit

> 0. In equation

(7.11) this means �2 > 0. We also the marginal e¤ect of Sit to be positive �which implies

�1 > 0 in equation (7.11). This is because the likelihood of adoption should increase over time
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as more information about the product becomes available from within and outside the social

network. In regression model (7.12) we have included extra terms to test the concavity of the

relationship with respect to Sit and Ait as predicted by social learning about product existence.

This concavity can be investigated by testing �3 < 0; �4 < 0 and �5 < 0.25 We have include

error terms to re�ect the possibility that adoption probabilities may vary across individuals over

time �more about this in the empirical section.

In contrast, the reduced form model for (7.2) is of the form:

Pr(yit+1 = 1jfyiti ; :::; yitg = f0; :::; 0g;Mis = 1 for some s � t) = �i + "it+1

It is therefore easy to test one model against the other by estimating a regression model of the

form:

Pr(yit+1 = 1jfyiti ; :::; yitg = f0; :::; 0g) = �i + �1Sit + �2Ait + �3S2it + �4A2it + �5SitAit

+�0mit + �1Sitmit + �2Aitmit + �3S
2
itmit + �4A

2
itmit + �5SitAitmit + "it+1(7.13)

with mit = 1 if Mis = 1 for some s � t, and = 0 otherwise. As before �i captures variation in

product usefulness across individuals. If the true model is social learning only about existence,

then all ��s should be equal to minus the corresponding ��s, so that the sum of the two equals

0. If the true model is only social learning about quality, then all ��s should be equal to 0. If we

reject both hypotheses �and the total marginal e¤ect of Sit and Ait on the dependent variable

is smaller when mit = 1 �it means that the true model is a hybrid of the two forms of social

learning.

25The sign prediction on the cross term SitAit arises because information from the network is less valuable if
the person has already received many signals from non-network sources.
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A similar approach can be used to test the presence of network externalities and strategic

complementarities driven by factors other than social learning. Identi�cation is achieved simply

by noting that social learning stops once i has adopted, while other network externalities continue

having an in�uence on usage even after i is familiar with the product and its characteristics.

Formally, let zit = 1 if yis = 1 for some s < t, and 0 otherwise. In other words, zit = 1 if i

has already used the product prior to period t. The estimated model is of the form:

Pr(yit+1 = 1) = �i + �1Sit + �2Ait + �3S
2
it + �4A

2
it + �5SitAit + 
0zit

+
1Sitzit + 
2Aitzit + 
3S
2
itzit + 
4A

2
itzit + 
5SitAitzit + "it+1 (7.14)

Unlike models (7.12) and (7.13), regression model (7.14) includes observations before and after

�rst adoption. If there is no social learning, network e¤ects should be the same before and after

�rst adoption, i.e., we should observe that 
2 = 
3 = 
4 = 
5 = 0. If there are no network

e¤ects other than social learning, then we should observe that whatever network e¤ects were

present before �rst adoption should cancel out after �rst adoption, i.e., that:

@ Pr(yit+1 = 1jzit = 0)
@Ait

> 0 =
@ Pr(yit+1 = 1jzit = 1)

@Ait

which is guaranteed if 
2 = ��2, 
4 = ��4 and 
5 = ��5. If the data generating process

is characterized by a combination of social learning and strategic complementarities, then we

should observe that:

@ Pr(yit+1 = 1jzit = 0)
@Ait

>
@ Pr(yit+1 = 1jzit = 1)

@Ait
> 0

Estimating model (7.14) allows us to test this as well.

39



In our empirical implementation, we only observe social network activity taking place over

the phone. We do not observe other forms of social interaction. This nonetheless does not

invalidate the application of the above model. First, we study the di¤usion of a service only

available on mobile phones. It is therefore reasonable to assume that information transmission

or network e¤ects are more relevant � and thus more likely to occur �with individuals with

whom one interacts over the phone. This is true even if phone interactions are complemented

by face-to-face exchanges.

Second, the phone interaction network that we observe is embedded into the denser network

of social interactions �i.e., if two individuals interact on the phone, they are by de�nition in-

teracting socially. This has bene�cial implications for identi�cation. Fafchamps, Goyal and van

der Leij (JEEA 2010) o¤er an elaborate treatment of the question of the embeddedness of the

observed network into a broader network of acquaintances. Their logic is the following. They

observe the co-authorship network between economists and they wish to test whether two indi-

viduals i and j who have never coauthored before are more likely to coauthor if their respective

past coauthors start to collaborate. This is then extended to the coauthors of coauthors, etc.

They argue that, because of embeddedness, social distance in the coauthor network is an upper

bound on social distance in the denser network of social interactions. Consequently, if the upper

bound falls (distance falls in the coauthor network) then the average distance in the social net-

work also falls. Applied to our setting this means that the interactions that we observe �e.g., i

calling j or receiving airtime from j �are a subset of all the interactions between i and j. The

key here is that if we do observe an interaction in phone network, then certainly an interaction

took place in the larger network of social acquaintances since it contains the phone network.

It follows that if there are interactions in the social network that are not observed in the phone

network, and these additional interactions are uncorrelated with those in the phone network from
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the point of view of information di¤usion/network e¤ects, then they simply enter the error term.

These interactions create noise that reduces the precision of our estimates, but the dataset is

large enough to cope with this problem. If additional interactions in the social network are

correlated with interactions in the phone network in terms of their information/network e¤ects,

then our estimated coe¢ cients capture the joint e¤ect of both types of social interactions, which

is ideal for us. Either way, our estimation approach is robust to unobserved social interactions.
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8. Appendix B. Oster�s (2019) approach for assessing bias posed by unobserv-

able selection

Oster (2019) shows how the size of the bias posed by unobservable selection, under certain

assumptions, can be inferred from coe¢ cient and R-squared di¤erences across models with

di¤erent sets of control variables. Adopting Oster�s notation, let the parameter � denote the

proportional selection relationship. If unobservable and observable factors are equally related

to treatment, � = 1; if unobservable are more strongly related to treatment than observable

factors, � > 1; and if observable factors are more strongly related to treatment than observables,

� < 1. Further, let Rmax denote the R-squared from a hypothetical regression of the dependent

variable on the treatment variable and the observable and unobservable determinants of the

dependent variable. For a model that is linear in a single treatment variable, Oster shows

how the bias on the treatment coe¢ cient obtained from a regression where observable but not

unobservable factors are included can be written as approximately equal to �
h
�0 � e�i [Rmax� eR]eR�R0 ;

where �0 denotes the coe¢ cient resulting from the short regression of the dependent variable

on the treatment variable with observable control variables excluded; R0 is the R-squared from

the short regression; e� is the coe¢ cient resulting from the regression with observable control

variables included, and eR is the R-squared from that regression. Clearly, the bias in e� can be
severe if: unobservable factors are strongly related to treatment (in which case � is high); if

the treatment coe¢ cient changes considerably as a result of the addition of observable control

variables (in which case
h
�0 � e�i is high) while at the same time the R-squared doesn�t move

much (in which case eR�R0 is low); and/or if the unobservable factors (would) have considerable
explanatory power (in which case Rmax� eR is high). Of course, neither � nor Rmax is observable,
but the bias formula above is nevertheless useful as it enables researchers to quantify the bias

for speci�c values of � and Rmax: Clearly, if there is no movement in the treatment coe¢ cient as
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we move from the short regression to the regression with observable controls included, Oster�s

framework implies that there is no bias, regardless of the values of � and Rmax.
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Table B1
First Adoption: Robustness to selection on unobservables

(1) (2) (3) (4) (5)
Linear model: Linear model: Bias adjusted β Bias adjusted β δ  for β =0
Uncontrolled Controlled

ΔA(it) 0.0056 0.00549 0.0053 0.0051 0
s.e. 0.00031 0.00032 -- -- --
R-squared 0.005 0.0427

1.0 2.0 6.167
0.085 0.085 0.085

Controls
ΔS(it)^2 Y Y
Tower N Y
year x month x district N Y

Observations 96,266 96,266
Note: Columns (1) and (2) show results for a linear specification of the form Δy(i,t+1) = β*ΔA(it) + controls + Δε(i,t+1). 
Standard errors are clustered at the district level (M=27). Columns (3)-(4) show bias-adjusted estimates of β, 
based on the approach developed by Oster (2019). Column (5) shows the value of δ for which β = 0, again based
on Oster (2019). Oster's approach is not suitable for specifications where the potentially endogenous 
explanatory variable enters nonlinearly (as in Table 2), hence we consider linear specifications for the analysis of robustness
to selection on unobservables. 
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